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Rotation-reversal symmetry was recently introduced to generalize the symmetry

classification of rigid static rotations in crystals such as tilted octahedra in

perovskite structures and tilted tetrahedra in silica structures. This operation has

important implications for crystallographic group theory, namely that new

symmetry groups are necessary to properly describe observations of rotation-

reversal symmetry in crystals. When both rotation-reversal symmetry and time-

reversal symmetry are considered in conjunction with space-group symmetry, it

is found that there are 17 803 types of symmetry which a crystal structure can

exhibit. These symmetry groups have the potential to advance understanding of

polyhedral rotations in crystals, the magnetic structure of crystals and the

coupling thereof. The full listing of the double antisymmetry space groups can be

found in the supplementary materials of the present work and at http://

sites.psu.edu/gopalan/research/symmetry/.

1. Introduction

Rotation-reversal symmetry (Gopalan & Litvin, 2011) was

introduced to generalize the symmetry classification of tilted

octahedra perovskite structures (Glazer, 2011). The rotation-

reversal operation, represented by 1* (previously represented

by 1�) was compared by analogy to the well known time-

reversal operation, represented by 10 (see Fig. 1). Although

reversing time in a crystal is not something that can be

performed experimentally, it is nonetheless useful for

describing the magnetic symmetry of a crystal structure and

this magnetic symmetry description has important conse-

quences which can be observed by experiment (Opechowski,

1986). Likewise, rotation-reversal symmetry is useful in

describing the symmetry of a crystal structure composed of

molecules or polyhedral units. For example, the structure

conventionally described in Glazer notation (Glazer, 1972) as

aþo aþo cþo and classified with the group Immm10 is now classified

with the rotation-reversal group I4*/mmm*10 (No. 4206). An

aþo aþo cþo structure with a spin along the z direction in each

octahedron was formerly classified with the group Im0m0m and

is now classified with the group I4*/mm0m0* (No. 16490). The

rotation-reversal space groups used in this new classification

of tilted octahedra perovskites are isomorphic to, i.e. have the

same abstract mathematical structure, as double antisymmetry

space groups (Zamorzaev & Sokolov, 1957a,b; Zamorzaev,

1976). As rotation-reversal space groups are isomorphic to

double antisymmetry space groups, in the present work we will

use the terminology and notation associated with double

antisymmetry space groups.

Double antisymmetry space groups are among the gener-

alizations of the crystallographic groups which began with

Heesch (1930) and Shubnikov (1951) and continued to include

a myriad of generalizations under various names as anti-

symmetry groups, cryptosymmetry groups, quasisymmetry

groups, color groups and metacrystallographic groups (see

reviews by Koptsik, 1967, 1968; Zamorzaev & Palistrant, 1980;

Opechowski, 1986; Zamorzaev, 1988). Only some of these

groups have been explicitly listed, e.g. the black-and-white

space groups (Belov et al., 1955, 1957a,b) and various multiple

antisymmetry (Zamorzaev, 1976) and color groups (Zamor-

zaev et al., 1978). While no explicit listing of the double anti-

symmetry space groups has been given, the number of these

groups, and other generalizations of the crystallographic

groups, have been calculated (see Zamorzaev, 1976, 1988;

Zamorzaev & Palistrant, 1980; Jablan, 1987, 1990, 1992,

Figure 1
Identity (1) and anti-identities (10, 1* and 10*) of the rotation-reversal and
time-reversal space groups.
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1993a,b, 2002; Palistrant & Jablan, 1991; Radovic & Jablan,

2005).

In x2, we shall define double antisymmetry space groups and

specify which of these groups we shall explicitly tabulate. This

is followed by the details of the procedure used in their

tabulation. In x3, we set out the format of the tables listing

these groups. x4 describes example diagrams of double anti-

symmetry space groups (Fig. 4a: No. 8543 C20/m*, Fig. 4b: No.

16490 I4*/mm0m0*, Fig. 4c: No. 13461 Ib0*c0a0). x5 gives the

computational details of how the types were derived.

Zamorzaev & Palistrant (1980) have calculated not only the

total number of types of double antisymmetry space groups,

but they have also specified the number in sub-categories. We

have found errors in these numbers. Consequently, the total

number of types of groups is different than that calculated by

Zamorzaev & Palistrant (1980). This is discussed in x6.

2. Double antisymmetry space groups

Space groups, in the present work, will be limited to the

conventional three-dimensional crystallographic space groups

as defined in Volume A of International Tables for Crystal-

lography (Hahn, 2006). An antisymmetry space group is

similar to a space group, but some of the symmetry elements

may also ‘flip’ space between two possible states, e.g. (r, t) and

(r, �t). A double antisymmetry space group extends this

concept to allow symmetry elements to flip space in two

independent ways between four possible states, e.g. (r, t, ’),

(r, �t, ’), (r, t, �’) and (r, �t, �’). A more precise definition

will be given below.

To precisely define antisymmetry space groups, we will start

by defining an anti-identity. An operation, e.g. 10, is an anti-

identity if it has the following properties:

(a) Self-inverse: 10�10 = 1 where 1 is identity.

(b) Commutivity: 10�g = g�10 for all elements g of E(3).

(c) 10 is not an element of E(3).

E(3) is the three-dimensional Euclidean group, i.e. the

group of all distance-preserving transformations of three-

dimensional Euclidean space. A space group can be defined as

a group G � Eð3Þ such that the subgroup composed of all

translations in G is minimally generated by a set of three

translations with linearly independent translation vectors. We

can extend this to define antisymmetry space groups as

follows:

Let an n-tuple antisymmetry space group be defined as a group

G � E 3ð Þ � P such that the subgroup composed of all trans-

lations in G is minimally generated by a set of three transla-

tions with linearly independent translation vectors and P is

minimally generated by a set of n anti-identities and is

isomorphic to Z2
n.

Thus, for single antisymmetry space groups, P is minimally

generated by just one anti-identity, for double, two, for triple,

three, and so forth. It should be noted that the above defini-

tion could be generalized to arbitrary spaces and coloring

schemes by changing Eð3Þ and P, respectively, but that is

beyond the scope of the present work.

Let the two anti-identities which generate P for double

antisymmetry space groups be labeled as 10 and 1*. The

product of 10 and 1* is also an anti-identity which will be

labeled 10*. The coloring of 10, 1* and 10* is intended to assist

the reader and has no special meaning beyond that. Double

antisymmetry has a total of three anti-identities: 10, 1* and 10*.

Note that these three anti-identities are not independent

because each can be generated from the product of the other

two. So although we have three anti-identities, only two are

independent and thus we call it ‘double antisymmetry’ (more

generally n-antisymmetry has 2n
� 1 anti-identities). 10

generates the group 1000 = {1,10}, 1* generates the group 1* =

{1,1*}, and together 10 and 1* generate the group 10001* =

{1,10,1*,10*}. For double antisymmetry space groups, P = 10001*.

Fig. 2 shows how the elements of 10001* multiply. To evaluate

the product of two elements of 10001* with the multiplication

table given in Fig. 2(a), we find the row associated with the first

element and the column associated with the second element,

e.g. for 10�1*, go to the second row, third column to find 10*. To

evaluate the product of two elements of 10001* with the Cayley

graph given in Fig. 2(b), we start from the circle representing

the first element and follow the arrow representing the second,

e.g. for 10�1*, we start on the red circle (10) and take the blue

path (1*) to the green circle (10*).

2.1. The structure of double antisymmetry groups

When a spatial transformation is coupled with an anti-

identity, we shall say it is colored with that anti-identity. This is

represented by adding 0, * or 0* to the end of the symbol

representing the spatial transformation, e.g. a fourfold rota-

tion coupled with time-reversal (i.e. the product of 4 and 10) is

40.

We shall say that all double antisymmetry groups can be

constructed by coloring the elements of a colorblind parent

group. In the case of a double antisymmetry space group, the
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Figure 2
(a) Multiplication table of 10001*. To evaluate the product of two elements,
we find the row associated with the first element and the column
associated with the second element, e.g. for 10�1*, go to the second row,
third column to find 10*. (b) Cayley graph generated by 10, 1* and 10*. To
evaluate the product of two elements, we start from the circle
representing the first element and follow the arrow representing the
second, e.g. for 10�1*, we start on the red circle (10) and take the blue path
(1*) to the green circle (10*).



colorblind parent group, Q, is one of

the crystallographic space groups.

There are four different ways of

coloring an element of Q, namely

coloring with 1, 10, 1* or 10* which we

shall then refer to as being colorless,

primed, starred or prime–starred,

respectively. Let Q10001* be the group

formed by including all possible

colorings of the elements of Q, i.e. the

direct product of Q and 10001*. Since

Q10001* contains all possible colorings

of the elements of Q, every double

antisymmetry space group whose

colorblind parent is Q must be a

subgroup of Q10001*.

Every subgroup of Q10001* whose

colorblind parent is Q is of the

form of one of the 12 categories of

double antisymmetry groups listed in

Table 1. The formulae of Table 1 are

represented visually in Appendix A

using Venn diagrams.

2.2. Example of generating double antisymmetry groups

As an example, consider applying the formulae in Table 1 to

point group 222. 222 has four elements: {1,2x,2y,2z}. 222 has

three index-2 subgroups: {1,2x}, {1,2y} and {1,2z} which will be

denoted by 2x, 2y and 2z, respectively. The subscripts indicate

the axes of rotation. Applying the formulae in Table 1 yields

the following:

Category (1): Q

1. Q = 222! Q = {1,2x,2y,2z}

Category (2): Q + Q10

2. Q = 222! Q1000 = {1,2x,2y,2z,10,2x
0,2y
0,2z
0}

Category (3): H + (Q � H)10

3. Q = 222, H = 2x! Q(H) = {1,2x,2y
0,2z
0}

4. Q = 222, H = 2y! Q(H) = {1,2x
0,2y,2z

0}

5. Q = 222, H = 2z! Q(H) = {1,2x
0,2y
0,2z}

Category (4): Q + Q1*

6. Q = 222! Q1* = {1,2x,2y,2z,1*,2x*,2y*,2z*}

Category (5): Q + Q10 + Q1* + Q10*

7. Q = 222! Q10001* = {1,2x,2y,2z,10,2x
0,2y
0,2z
0,1*,2x*,2y*,2z*,

10*,2x
0*,2y

0*,2z
0*}

Category (6): H + (Q � H)10 + H1* + (Q � H)10*

8. Q = 222, H = 2x! Q(H)1* = {1,2x,2y
0,2z
0,1*,2x*,2y

0*,2z
0*}

9. Q = 222, H = 2y! Q(H)1* = {1,2x
0,2y,2z

0,1*,2x
0*,2y*,2z

0*}

10. Q = 222, H = 2z! Q(H)1* = {1,2x
0,2y
0,2z,1*,2x

0*,2y
0*,2z*}

Category (7): H + (Q � H)1*

11. Q = 222, H = 2x! Q{H} = {1,2x,2y*,2z*}

12. Q = 222, H = 2y! Q{H} = {1,2x*,2y,2z*}

13. Q = 222, H = 2z! Q{H} = {1,2x*,2y*,2z}

Category (8): Q + Q10*

14. Q = 222! Q1000* = {1,2x,2y,2z,10*,2x
0*,2y

0*,2z
0*}

Category (9): H + (Q � H)1* + H10 + (Q � H)10*

15. Q = 222, H = 2x! Q{H}1000 = {1,2x,2y*,2z*,10,2x
0,2y
0*,2z

0*}

16. Q = 222, H = 2y! Q{H}1000 = {1,2x*,2y,2z*,10,2x
0*,2y

0,2z
0*}

17. Q = 222, H = 2z! Q{H}1000 = {1,2x*,2y*,2z,10,2x
0*,2y

0*,2z
0}

Category (10): H + (Q � H)10 + H10* + (Q � H)1*

18. Q = 222, H = 2x!Q(H)1000* = {1,2x,2y
0,2z
0,10*,2x

0*,2y*,2z*}

19. Q = 222, H = 2y!Q(H)1000* = {1,2x
0,2y,2z

0,10*,2x*,2y
0*,2z*}

20. Q = 222, H = 2z!Q(H)1000* = {1,2x
0,2y
0,2z,10*,2x*,2y*,2z

0*}

Category (11): H + (Q � H)10*

21. Q = 222, H = 2x! Q(H){H} = {1,2x,2y
0*,2z

0*}

22. Q = 222, H = 2y! Q(H){H} = {1,2x
0*,2y,2z

0*}

23. Q = 222, H = 2z! Q(H){H} = {1,2x
0*,2y

0*,2z}

Category (12): H \ K + (H � K)1* + (K � H)10 +

(Q � (H + K))10*

24. Q = 222, H = 2y, K = 2z! Q(H){K} = {1,2x
0*,2y*,2z

0}

25. Q = 222, H = 2x, K = 2z! Q(H){K} = {1,2x*,2y
0*,2z

0}

26. Q = 222, H = 2x, K = 2y! Q(H){K} = {1,2x*,2y
0,2z
0*}

27. Q = 222, H = 2z, K = 2y! Q(H){K} = {1,2x
0*,2y

0,2z*}

28. Q = 222, H = 2z, K = 2x! Q(H){K} = {1,2x
0,2y
0*,2z*}

29. Q = 222, H = 2y, K = 2x! Q(H){K} = {1,2x
0,2y*,2z

0*}.

Note that although 29 double antisymmetry point groups

are generated from using 222 as a colorblind parent group,

they are not all of distinct antisymmetry point-group types, as

is explained in x2.3. In the above example, there are only 12

unique types of groups, as discussed further on. Two additional

examples, using point group 2/m and space group Cc, are given

in Appendix B.

Since the index-2 subgroups of the crystallographic space

groups are already known and available in International

Tables for Crystallography Volume A, applying this set of

formulae is straightforward. If applied to a representative

group of each of the 230 crystallographic space-group types,

38 290 double antisymmetry space groups are generated.

These 38 290 generated groups can be sorted into 17 803

equivalence classes, i.e. double antisymmetry space-group

types, by applying an equivalence relation.
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Table 1
Double antisymmetry group categories and group structure.

The minus sign, ‘�’, indicates the set-theoretic difference, also known as the relative complement. The plus
sign, ‘+’, indicates union. H and K are unique index-2 subgroups of Q (an index-2 subgroup has half as many
elements as the group, or equivalently: |Q/H| = 2). These category symbols were introduced by Litvin et al.
(1994, 1995).

Category Symbol and structure

Number of double
antisymmetry
space-group types

(1) Q = Q 230
(2) Q1000 = Q + Q10 230
(3) Q(H) = H + (Q � H)10 1191
(4) Q1* = Q + Q1* 230
(5) Q10001* = Q + Q10 + Q1* + Q10* 230
(6) Q(H)1* = H + (Q � H)10 + H1* + (Q � H)10* 1191
(7) Q{H} = H + (Q � H)1* 1191
(8) Q1000* = Q + Q10* 230
(9) Q{H}1000 = H + (Q � H)1* + H10 + (Q � H)10* 1191
(10) Q(H)1000* = H + (Q � H)10 + H10* + (Q � H)1* 1191
(11) Q(H){H} = H + (Q � H)10* 1191
(12) Q(H){K} = H \ K + (H � K)1* + (K � H)10 + (Q � (H + K))10* 9507

Total: 17803



2.3. Double antisymmetry space-group types and the proper
affine equivalence relation

The well known 230 crystallographic space-group types

given in International Tables for Crystallography Volume A

(Hahn, 2006) are the proper affine classes of space groups

(‘types’ is used instead of ‘classes’ to avoid confusion with

‘crystal classes’). The equivalence relation of proper affine

classes is as follows: two space groups are equivalent if

and only if they can be bijectively mapped by a proper

affine transformation (proper means chirality-preserving)

(Opechowski, 1986). In the literature, the ‘space-group types’

are often referred to as simply ‘space groups’ when the

distinction is unnecessary.

For the present work, we will use ‘double antisymmetry

space-group types’ to refer to the proper affine classes of

double antisymmetry space groups. This is consistent with

Zamorzaev’s works on generalized antisymmetry (Zamorzaev

& Sokolov, 1957a,b; Zamorzaev, 1976, 1988; Zamorzaev et al.,

1978; Zamorzaev & Palistrant, 1980).

As an example, we consider the proper affine equivalence

classes of the 29 Q = 222 double antisymmetry groups

generated using the formulae given in Table 1. Only 12 such

classes exist, one in each category. For categories (1), (2), (4),

(5) and (8), the reason for this is that there is only one group

generated in each to begin with. For categories (3), (6), (7),

(9), (10) and (11), there are three groups generated which are

related to each other by 120� rotations (e.g. {1,2x,2y
0,2z
0} =

3xyz�{1,2x
0,2y,2z

0}�3xyz
�1 = 3xyz

�1
�{1,2x

0,2y
0,2z}�3xyz) and therefore

they are members of the same equivalence class. For category

(12), the six generated groups are all in the same equivalence

class because {1,2x
0*,2y*,2z

0} = 3xyz�{1,2x*,2y
0,2z
0*}�3xyz

�1 =

3xyz
�1
�{1,2x

0,2y
0*,2z*}�3xyz = 4x�{1,2x

0*,2y
0,2z*}�4x

�1 = 4x�3xyz�

{1,2x
0,2y*,2z

0*}�3xyz
�1
�4x
�1 = 4x�3xyz

�1
�{1,2x*,2y

0*,2z
0}�3xyz�4x

�1.

This is demonstrated with point-group diagrams in Fig. 3.

Proper affine equivalence and other definitions of equiva-

lence are discussed in Appendix C.

2.4. Derivation of the double antisymmetry space-group
types

Double antisymmetry space-group types of categories (1)

through (11) of Table 1 are already known or easily derived.

The group types of category (1) are the well known 230

conventional space-group types. The groups of categories (2),

(4), (5) and (8) are effectively just products of the groups of

category (1) with 1000, 1*, 10001* and 1000*, respectively. The groups

of category (3) are the well known black-and-white space

groups (Belov et al., 1955, 1957a,b) [also known as type M

magnetic space groups (Opechowski, 1986)]. The groups of

categories (7) and (11) are derived by substituting starred

operations and prime–starred operations, respectively, for

the primed operations of category (3) groups. And finally, the

groups of categories (6), (9) and (10) are products of the

groups of categories (3), (7) and (11), respectively, with 1*, 1000

and 1000*, respectively.

For the groups of category (12) we have used the following

four-step procedure:

(i) For one representative group Q from each of the 230

types of crystallographic space groups, we list all subgroups of

index 2 (Aroyo, Kirov et al., 2006; Aroyo, Perez-Mato et al.,

2006; Aroyo et al., 2011).

(ii) We construct and list all double antisymmetry space

groups Q(H){K} for each representative group Q and pairs of

distinct subgroups, H and K, of index 2. This step results in

26 052 Q(H){K} groups.

(iii) For every pair of groups Q1(H1){K1} and Q2(H2){K2}

where Q1 and Q2, H1 and H2 and K1 and K2 are pairwise of

the same space-group type, we evaluate the proper affine

equivalence relation to determine if Q1(H1){K1} and

Q2(H2){K2} are of the same double antisymmetry space-group

type.

(iv) From each set of groups belonging to the same type, we

list one representative double antisymmetry space group.

Further details for each of these steps are given in x5.

3. Tables of double antisymmetry space groups

3.1. Double antisymmetry space-group types

The serial number, symbol and symmetry operations of a

representative group of each of the 17 803 double anti-

symmetry space-group types are given in the supplementary

material ‘Double Antisymmetry Space Groups.pdf’.1 The

double antisymmetry space-group symbols are based on the

Hermann–Mauguin symbol of the colorblind parent space

group, e.g. C20/m* is based on C2/m.

The first part of the symbol gives the lattice centering (or

more precisely the translational subgroup). If there are no

colored translations in the group, then this part of the symbol

is given as P (primitive), C (C-face centered), A (A-face

centered), I (body centered), F (all-face centered) or R

(rhombohedrally centered). If there are colored translations,

then P, C, A, I, F or R is followed by three color operations in

parentheses, e.g. C(1,10*,10)2/m0*. These three color operations

denote the coloring of a minimal set of generating lattice

translations indicated in Table 2. For example, consider
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Figure 3
Demonstration of proper affine equivalence of Q(H){K} groups
generated for Q = 222 using point-group diagrams (stereographic
projections).

1 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: PC5029). Some of this material is available at: http://
sites.psu.edu/gopalan/research/symmetry/.



C(1,10*,10)2/m0*: 1 is in the first position, 10* is in the second

position and 10 is in the third position. Looking up the lattice

symbol ‘C’ in the first column of Table 2, we find that the first,

second and third positions correspond to t[100], t[001] and t[1
2

1
20],

respectively. The translations of C(1,10*,10)2/m0* are therefore

generated by t[100], t[001]
0* and t[1

2
1
20]
0.

The second part of the symbol gives the remaining

generators for the double antisymmetry space group. This is

also based on the corresponding part of the Hermann–

Mauguin symbol of the colorblind parent space group. The

Seitz notation of each character is given in ‘secondPartOf-

SymbolGenerators.pdf’ in the supplementary material.

Finally, if the group is a member of category (2), (4), (5), (6),

(8), (9) or (10), then 10, 1*, 101*, 1*, 10*, 10, 10* or 10*,

respectively, is appended to the end of the symbol.

3.2. Using the Computable Document Format (CDF) file

The Computable Document Format (CDF) file ‘Double

antisymmetry space groups.cdf’ (supplementary material)

provides an interactive way to find the symbols and operations

of double antisymmetry space groups. The file is opened with

the Wolfram CDF Player which can be downloaded from

http://www.wolfram.com/cdf-player/. After opening the file,

click ‘Enable Dynamics’ if prompted. Provide the necessary

input with the drop-down menus.

A tutorial with screenshots is given in ‘Double anti-

symmetry space groups CDF tutorial.pdf (supplementary

material).

3.3. Using the PDF file

In the PDF file ‘Double Antisymmetry Space Groups.pdf’

(supplementary material), the 17 803 double antisymmetry

space groups are listed sequentially. The first portion of the file

contains links to each group entry. These links are sorted by

the colorblind parent group, e.g. C20/m* is listed under the

space-group number of C2/m (i.e. ‘SG. 12’).

The first line of each entry gives the sequential serial

number (1 through 17 803), the double antisymmetry space-

group symbol and the X-ray diffraction symmetry group (i.e.

the symmetry group obtained by removing all of the starred

and prime–starred operations and changing all of the primed

operations to colorless operations). The second line gives the

number of the colorblind parent group, the double anti-

symmetry point group and the crystal system. The remaining

lines give the symmetry operations of the group: a set of coset

representatives of the group with respect to the translational

subgroup generated by translations of the conventional unit

cell. These symmetry operations are given in International

Tables Volume A notation and Seitz notation. Three examples

from the listings of double antisymmetry space groups are

given in Table 3.

3.4. Machine-readable file

The ‘machine-readable’ file ‘DASGMachineReadable.txt’

(supplementary material) is intended to provide a simple way

to use the double antisymmetry space groups in code or

software such as MatLab or Mathematica. The structure of the

file is given in the supplementary material file called ‘Using

the Machine Readable File.pdf’. The file ‘Import DASG-

MachineReadable.nb’ (supplementary material) has been

provided to facilitate loading into Mathematica.

4. Symmetry diagrams

Symmetry diagrams have been made for the example double

antisymmetry space groups listed in Table 3. These diagrams

are intended to extend the conventional space-group diagrams

such as those in International Tables for Crystallography

Volume A.

In Fig. 4(a), double antisymmetry space group No. 8543,

C20/m*, is projected along the b axis. In Fig. 4(b), double

antisymmetry space group No. 16490, I4*/mm0m0*, is projected

along the c axis. In Fig. 4(c), double antisymmetry space group

No. 13461, Ib0*c0a0, is projected along the c axis. As with Fig.

4(a), the symbols in these diagrams are naturally extended

from those used for conventional space groups in International

Tables for Crystallography Volume A.

5. Computation details

The majority of the computation was performed in Mathe-

matica using 4 � 4 augmented matrices to represent space-

group operations and unit-cell transformations (more gener-

ally, affine transformations). The use of augmented matrices to

represent space-group operations and unit-cell transforma-

tions is described in International Tables for Crystallography

Volume A, Chapters 5.1 and 8.1. These matrices were down-

loaded for each space-group type from the GENPOS tool on

the Bilbao Crystallographic Server, http://www.cryst.ehu.es/

cryst/get_gen.html (Aroyo, Kirov et al., 2006; Aroyo, Perez-

Mato et al., 2006; Aroyo et al., 2011). The standard setting was

used for each of the 230 space-group types as given in Inter-

national Tables for Crystallography Volume A.

5.1. Augmented matrices

Every space-group operation can be broken up into a linear

transformation R and a translation t which transform the

coordinates (r1, r2, r3) into (r1
0, r2

0, r3
0):
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Table 2
Positions of generating translations.

Lattice symbol
P(1,1,1)

First position
P(1,1,1)

Second
position P(1,1,1)

Third position
P(1,1,1)

P t[100] t[010] t[001]

C t[100] t[001] t[1
2

1
20]

A t[100] t[010] t[01
2

1
2]

I t[100] t[001] t[1
2

1
2

1
2]

F t[01
2

1
2]

t[1
20

1
2]

t[1
2

1
20]

R t[001] t[2
3

1
3

1
3]

t[1
3

2
3

2
3]
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Table 3
Examples of double antisymmetry space-group listings.



r0 ¼ Rrþ t;

r01
r02
r03

0
@

1
A ¼ R11 R12 R13

R21 R22 R23

R31 R32 R33

0
@

1
A r1

r2

r3

0
@

1
Aþ t1

t2

t3

0
@

1
A: ð1Þ

It is convenient to condense this linear transformation and

translation into a single square matrix called an augmented

matrix:

r01
r02
r03
1

0
BB@

1
CCA ¼

R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 1

0
BB@

1
CCA

r1

r2

r3

1

0
BB@

1
CCA: ð2Þ

Note that the final row is necessary to make a square 4 � 4

matrix but contains no information specific to the transfor-

mation. When using these augmented matrices to represent

space-group operations, the product of two space-group
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Figure 4
Example double antisymmetry space-group diagrams. (a) No. 8543 C20/m*, (b) No. 16490 I4*/mm0m0*, (c) No. 13461, Ib0*c0a0. The legend relates to
part (a).



operations is evaluated by matrix multiplication, i.e. g1g2 is

performed by multiplying the matrices which represent g1 and

g2 to get a product matrix which is also an augmented matrix

that represents a space-group operation. The inverse of a

space-group operation is represented by the matrix inverse of

the operation’s augmented matrix. The sign of the determi-

nant of an augmented matrix representing a space-group

operation determines if it is proper (orientation-preserving).

A positive determinant means that it is proper.

For a set of 4 � 4 matrices S and a 4 � 4 matrix A, we will

denote the set formed by the similarity transformation of each

element of S by A as ASA�1, i.e. ASA�1 ¼ fAsA�1 : s 2 Sg.

5.2. Index-2 subgroups

To evaluate the formulae in Table 1 for any given colorblind

parent space group Q, the index-2 subgroups of Q are needed.

The index-2 subgroups of a space group are also space groups

themselves. As such, every index-2 subgroup of space group Q

must be one of the 230 types of space groups. Using this, we

can specify an index-2 subgroup of Q by specifying the type of

the subgroup (1 to 230) and a transformation from a standard

representative group of that type. This is to say that H, a

subgroup of Q, can be specified by a standard representative

group H0 and the transformation T such that H ¼ TH0T�1.

Note, this is just the usual linear algebra change-of-basis

formula; we are simply using T to transform from the standard

conventional basis to the basis which makes H a subgroup

of Q.

Q, H and H0 are each represented by a set of 4 � 4 real

matrices. T is represented by a single 4 � 4 real matrix. For

every element h in H there is an element h0 in H0 such that

h ¼ Th0T�1. Thus, we make the set of matrices representing H

by computing Th0T�1 for each matrix in the set representing

H0.

The index-2 subgroup data were downloaded from the

Bilbao Crystallographic Server. Altogether there are 1848

index-2 subgroups among the 230 representative space groups.

Each entry (out of 1848) consisted of: a number between 1 and

230 for the space-group type of Q, a number between 1 and

230 for the space-group type of H0 and a 4 � 4 matrix for T.

5.3. Normalizer method for evaluating the proper affine
equivalence of Q(H){K} groups

The proper affine equivalence relation can be defined as:

two groups, G1 and G2, are equivalent if and only if G1 can be

bijectively mapped to G2 by a proper affine transformation, a.

Expressed in mathematical shorthand, this is

G2 � G1 	 9a 2 A
þ : G2 ¼ aG1a�1

� �
; ð3Þ

where � is the proper affine equivalence relational operator,

	 is logical equivalence (‘is logically equivalent to’), 9a is the

existential quantification of a (‘there exists a’), 2 means ‘an

element of’, : means ‘such that’ and A
þ is the group of proper

affine transformations. An affine transformation is the

combination of a linear transformation and a translation. A

proper affine transformation is an affine transformation that

preserves chirality.

For evaluating the proper affine equivalence of a pair of

Q(H){K} groups, if the space-group types of Q, H and K of one

of the Q(H){K} groups are not the same as those of the other,

then the proper affine equivalence relation fails and no further

work is necessary. For a pair of Q(H){K} groups where they

are the same, we have derived a method to evaluate proper

affine equivalence based on affine normalizer groups. To begin

this derivation, we can expand the proper affine equivalence

for Q(H){K} groups to

Q H2ð ÞfK2g � Q H1ð ÞfK1g

	 9a 2 A
þ : Q ¼ aQa�1

� �
^ H2 ¼ aH1a�1
� �

^ K2 ¼ aK1a�1
� �

;

ð4Þ

where ^ denotes logical conjunction (‘and’). The subscripts

have been omitted for Q1 and Q2 because we are testing the

equivalence of Q(H){K} groups where Q1 ¼ Q2. We can use

the definition of the proper affine normalizer group of Q, i.e.

NA þðQÞ ¼ fa 2 A
þ : Q ¼ aQa�1g

2 (Opechowski, 1986), to get

Q H2ð ÞfK2g � Q H1ð ÞfK1g

	 9a 2 NA þðQÞ : H2 ¼ aH1a�1
� �

^ K2 ¼ aK1a�1
� �

: ð5Þ

H1 and H2 are mapped by proper affine transformations, TH1

and TH2
, respectively, from a standard representative group,

H0, as follows: H1 ¼ TH1
H0TH1

�1 and H2 ¼ TH2
H0TH2

�1.

Likewise, K1 and K2 are mapped by proper affine

transformations, TK1
and TK2

, respectively, from a standard

representative group, K0, as follows: K1 ¼ TK1
K0TK1

�1

and K2 ¼ TK2
K0TK2

�1. Thus, by substitution, ðH2 ¼

aH1a�1Þ ^ ðK2 ¼ aK1a�1Þ is equivalent to ðTH2
H0T�1

H2
¼

aTH1
H0T�1

H1
a�1Þ ^ ðTK2

K0T�1
K2
¼ aTK1

K0T�1
K1

a�1Þ, which can

be rearranged to ðH0 ¼ ðT
�1
H2

aTH1
ÞH0ðT

�1
H2

aTH1
Þ
�1
Þ ^ ðK0 ¼

ðT�1
K2

aTK1
ÞK0ðT

�1
K2

aTK1
Þ
�1
Þ. By applying the definition of a

normalizer group again, we find that T�1
H2

aTH1
2 NA þðH0Þ and

T�1
K2

aTK1
2 NA þðK0Þ, which rearrange to a 2 TH2

NA þðH0ÞT
�1
H1

and a 2 TK2
NA þðK0ÞT

�1
K1

, respectively. Therefore, the proper

affine equivalence of Q(H1){K1} and Q(H2){K2} is logically

equivalent to the existence of a non-empty intersection of

NA þðQÞ, TH2
NA þðH0ÞT

�1
H1

and TK2
NA þðK0ÞT

�1
K1

:

Q H1ð Þ K1

� �
� Q H2ð Þ K2

� �
	 NA þ Qð Þ \ TH2

NA þ H0ð ÞT
�1
H1
\ TK2

NA þ K0ð ÞT
�1
K1
6¼ ;: ð6Þ

This simplifies the problem of evaluating the equivalence

relation to either proving that the intersection has at least one

member or proving that it does not. To do this, we applied

Mathematica’s built-in ‘FindInstance’ function. As with the

subgroup data, the normalizer group data were downloaded

from the Bilbao Crystallographic Server. As previously

discussed, the formulae in Table 1 generate 38 290 double

antisymmetry space groups when applied to all 230 repre-

sentative space groups. With the aid of Mathematica, these

38 290 double antisymmetry space groups were partitioned by
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2 If Q contains improper motions, then NA þ ðQÞ is not actually a normalizer
group because Q 6� A

þ. In these cases, NA þ ðQÞ can be interpreted as
NA Qð Þ \A

þ. This does not affect the results.



the equivalence relation given in equation (3) into 17 803

proper affine equivalence classes, i.e. 17 803 double anti-

symmetry space-group types.

This method can be easily generalized to other types of

antisymmetry and color symmetry. For example, for anti-

symmetry groups formed from one index-2 subgroup, such

as Q(H) groups, the condition simply reduces to the

following:

Q H1ð Þ � Q H2ð Þ 	 NA þ Qð Þ \ TH2
NA þ H0ð ÞT

�1
H1
6¼ ;: ð7Þ

For finding the double antisymmetry space-group types, only

conditions for Q(H) and Q(H){K} groups are necessary. This is

because it is trivial to map these results to all the other cate-

gories of double antisymmetry space groups. This normalizer

method is demonstrated in Appendix B to derive all double

antisymmetry space-group types where Q = Cc.

6. Number of types of double antisymmetry space
groups

The total number of types of double antisymmetry space

groups listed by the present work is 17 803. The total number

of Q(H){K} types listed by the present work is 9507. These

values differ from those given by Zamorzaev & Palistrant

(1980). We have found four fewer Q(H){K} types where Q =

Ibca (No. 73 in International Tables for Crystallography

Volume A). Since there are only a small number of discre-

pancies between our listing and the numbers calculated by

Zamorzaev & Palistrant, each will be addressed explicitly.

Zamorzaev & Palistrant (1980) gave a list of double anti-

symmetry space-group generators in noncoordinate notation

(Koptsik & Shubnikov, 1974). For Ibca [21a in Zamorzaev &

Palistrant (1980)] the following generators are used:

a; b;
aþ bþ c

2

� �
c

2
2 �

b

2
m :

a

2
2b

4

� 	
:

a; b, aþbþc
2 , c

2 2, b
2 m and a

2 2b
4

can be interpreted, in Seitz notation,

as (1|100), (1|010), (1|12
1
2

1
2), (2z|120

1
2), (mx|12

1
20) and (2x|12

1
20),

respectively.

Zamorzaev & Palistrant (1980) couple these generators

with anti-identities to give generating sets for double anti-

symmetry space groups. However, unlike the more explicit

listing given in the present work, Zamorzaev & Palistrant give

only generating sets and only those that are unique under the

permutations of the elements of 10001* that

preserve the group structure, i.e. the auto-

morphisms of 10001*. Because of this concise

method of listing generating sets (only 1846

Q(H){K} generating sets are necessary), a single

generating set given by Zamorzaev & Palistrant

(1980) can represent up to six types under the

proper affine equivalence relation. The six

possible types correspond to the six auto-

morphisms of 10001*.

The automorphisms of 10001* correspond to

the possible permutations of the three anti-

identities of double antisymmetry: (10, 1*, 10*),

(10, 10*, 1*), (1*, 10, 10*), (1*, 10*, 10), (10*, 10, 1*) and

(10*, 1*, 10), i.e. Autð101
Þ ffi S3. Zamorzaev & Palistrant give

the number of types represented by each line, but not which

automorphisms must be applied to get them. This is discussed

in the supplementary material file called ‘Color Automorph-

isms of Double Antisymmetry.pdf’. There are only two lines of

generators from Zamorzaev & Palistrant for which their

resulting number of Q(H){K} types differs from this work.

These lines are given in Table 4.

Applying the six automorphisms of 10001* to Ibc0a0* from the

first line of Table 4, we get Ibc0a0*, Ibc0a*, Ibc*a0*, Ibc*a0,

Ibc0*a* and Ibc0*a0. According to Zamorzaev & Palistrant,

these are six distinct types whereas there are actually only

three distinct types. Ibc0a0* and Ibc0*a0 are of type No. 13460.

Ibc0a* and Ibc*a0 are of type No. 13462. Ibc*a0* and Ibc0*a*

are of type No. 13450. Applying the six automorphisms of 10001*

to Ib*c0*a0 from the second line of Table 4, we get Ib*c0*a0,

Ib0*c*a0, Ib0c0*a*, Ib0*c0a*, Ib0c*a0* and Ib*c0a0*. According to

Zamorzaev & Palistrant, these correspond to two distinct

types whereas they are actually all the same type, No.

13447.

Consequently, the generators in the first line of Table 4 map

to three types and the generators in the second line map to one

type, not six and two, respectively. Thus, there are four fewer

Q(H){K} types than the number given by Zamorzaev &

Palistrant (1980), i.e. 9507 rather than 9511. This error likely

affects the number of higher-order multiple antisymmetry

groups calculated by Zamorzaev & Palistrant as well. We

conjecture that there are 24 fewer non-trivial triple anti-

symmetry space groups than calculated by Zamorzaev &

Palistrant but that the numbers for other multiple anti-

symmetries are correct. If we are correct, this would mean that

the numbers in the final column of Table 1 of ‘Generalized

Antisymmetry’ by Zamorzaev (1988) should read 230, 1191,

9507, 109115, 1640955, 28331520 and 419973120, rather than

230, 1191, 9511, 109139, 1640955, 28331520 and 419973120 (the

numbers which differ are underlined). Similarly, if we are

correct, the final column of Table 3 of the same work should

read 230, 1651, 17803, 287574, 6879260, 240768842 and

12209789596, rather than 230, 1651, 17807, 287658, 6880800,

240800462 (mistyped as 240900462) and 12210589024.

Our results also confirm that there are 5005 types of

Q(H){K} Mackay groups (Jablan, 1993a, 2002; Radovic &

Jablan, 2005).
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Table 4
Double antisymmetry space-group generating sets listed by Zamorzaev & Palistrant
(1980).

The numbers in the second and third columns refer to the number of unique types obtained by
the permutation of anti-identities.

Generating line from
Zamorzaev & Palistrant
(1980)

Symbol in
present work

No. of types
(Zamorzaev &
Palistrant)

Actual number
(present work) Difference

a; b; aþbþc
2

� �
c
2 20 � b

2 m : a
2 2
b

4


 �
Ibc0a0* 6 3 �3

a; b; aþbþc
2

� �
c
2 20 � b

2 m
 : a
2 2
b

4


 �
Ib*c0*a0 2 1 �1



7. Concluding remarks

It was found that there are 17 803 types of double anti-

symmetry space groups. This is four fewer than previously

stated by Zamorzaev (1988). When rotation-reversal

symmetry and time-reversal symmetry are considered toge-

ther with the periodic spatial symmetry of a three-dimensional

crystal, our results show that there are 17 803 distinct types of

symmetry that a crystal may exhibit.

APPENDIX A
Visual representation of category structures using Venn
diagrams

The set structure of each category is visually represented in

Fig. 5. These category symbols, e.g. Q(H){K}, were introduced

by Litvin et al. (1994, 1995). They are intended as a general-

ization of the widely used Q(H) notation for magnetic groups.

The ‘()’ brackets enclose a subset which is not primed. The ‘{ }’

brackets enclose a subset which is not starred. The 1000, 1*, 1000* or

10001* at the end of a symbol indicates that 10, 1*, 10*, or 10 and

1*, respectively, are elements of the group.

APPENDIX B
Additional examples of generating double
antisymmetry groups

2/m has four elements: {1,2,m,�1}. 2/m has three index-2

subgroups: {1,2}, {1,m} and {1,�1}, which will be referred to as

2, m and �1, respectively.

Category (1): Q

1. Q = 2/m! Q = {1,2,m,�1}

Category (2): Q + Q10

2. Q = 2/m! Q1000 = {1,2,m,�1,10,20,m0,�10}

Category (3): H + (Q � H)10

3. Q = 2/m, H = 2! Q(H) = {1,2,m0,�10}

4. Q = 2/m, H = m! Q(H) = {1,20,m,�10}

5. Q = 2/m, H = �1! Q(H) = {1,20,m0,�1}

Category (4): Q + Q1*

6. Q = 2/m! Q1* = {1,2,m,�1,1*,2*,m*,�1*}

Category (5): Q + Q10 + Q1* + Q10*

7. Q = 2/m! Q10001* = {1,2,m,�1,10,20,m0,�10,1*,2*,m*,�1*,

10*,20*,m0*,�10*}

Category (6): H + (Q � H)10 + H1* + (Q � H)10*

8. Q = 2/m, H = 2! Q(H)1* = {1,2,m0,�10,1*,2*,m0*,�10*}

9. Q = 2/m, H = m! Q(H)1* = {1,20,m,�10,1*,20*,m*,�10*}

10. Q = 2/m, H = �1 ! Q(H)1* = {1,20,m0,�1,1*,20*,m0*,

�1*}

Category (7): H + (Q � H)1*

11. Q = 2/m, H = 2! Q{H} = {1,2,m*,�1*}

12. Q = 2/m, H = m! Q{H} = {1,2*,m,�1*}

13. Q = 2/m, H = �1! Q{H} = {1,2*,m*,�1}

Category (8): Q + Q10*

14. Q = 2/m! Q1000* = {1,2,m,�1,10*,20*,m0*,�10*}

Category (9): H + (Q � H)1* + H10 + (Q � H)10*

15. Q = 2/m, H = 2! Q{H}1000 = {1,2,m*,�1*,10,20,m0*,�10*}

16. Q = 2/m, H = m! Q{H}1000 = {1,2*,m,�1*,10,20*,m0,�10*}

17. Q = 2/m, H = �1 ! Q{H}1000 = {1,2*,m*,�1,10,20*,m0*,

�10}

Category (10): H + (Q � H)10 + H10* + (Q � H)1*

18. Q = 2/m, H = 2!Q(H)1000* = {1,2,m0,�10,10*,20*,m*,�1*}

19. Q = 2/m, H = m ! Q(H)1000* = {1,20,m,�10,10*,2*,m0*,

�1*}

20. Q = 2/m, H = �1 ! Q(H)1000* = {1,20,m0,�1,10*,2*,m*,

�10*}

Category (11): H + (Q � H)10*

21. Q = 2/m, H = 2! Q(H){H} = {1,2,m0*,�10*}

22. Q = 2/m, H = m! Q(H){H} = {1,20*,m,�10*}

23. Q = 2/m, H = �1! Q(H){H} = {1,20*,m0*,�1}

Category (12): H \ K + (H � K)1* + (K � H)10 + (Q �

(H + K))10*

24. Q = 2/m, H = m, K = �1! Q(H){K} = {1,20*,m*,�10}

25. Q = 2/m, H = 2, K = �1! Q(H){K} = {1,2*,m0*,�10}

26. Q = 2/m, H = 2, K = m! Q(H){K} = {1,2*,m0,�10*}

27. Q = 2/m, H = �1, K = m! Q(H){K} = {1,20*,m0,�1*}

28. Q = 2/m, H = �1, K = 2! Q(H){K} = {1,20,m0*,�1*}

29. Q = 2/m, H = m, K = 2! Q(H){K} = {1,20,m*,�10*}.

Both 2/m and 222 (given as an example in x2) have three

index-2 subgroups. Consequently, they generate the same

number of double antisymmetry groups: 29. However, unlike

with 222, none of the 29 groups formed from 2/m are in the

same equivalence class. This may seem surprising given that

2/m is isomorphic to 222. This can be thought of as being a

consequence of the fact that none of the elements of 2/m can

be rotated into one another, whereas the three twofold axes of

222 can. Another way to look at it is to consider that 2/m’s

proper affine normalizer group (12) does not contain non-

trivial automorphisms whereas 222’s proper affine normalizer

group (432) does.

As with all crystallographic space groups, Cc has an infinite

number of elements due to the infinite translational subgroup.

Cc’s elements will be represented as (t[100],t[001],t[1
2

1
20]){1,c}

where (t[100],t[001],t[1
2

1
20]) represent the generators of the

translation subgroup and {1,c} are coset representatives of

the corresponding decomposition. Cc has three index-2

subgroups: (t[100],t[001],t[1
2

1
20]){1}, (t[100],t[010],t[001]){1,c} and

(t[100],t[010],t[001]){1, t[1
2

1
20]�c}.

Category (1): Q

1. Q = Cc! Q = (t[100],t[001],t[1
2

1
20]){1,c}

Category (2): Q + Q10

2. Q = Cc! Q1000 = (t[100],t[001],t[1
2

1
20]){1,c,10,c0}

Category (3): H + (Q � H)10

3. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q(H) =

(t[100],t[001],t[1
2

1
20]){1,c0}

4. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q(H) =

(t[100],t[001],t[1
2

1
20]
0){1,c}

5. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H) =

(t[100],t[001],t[1
2

1
20]
0){1,c0}

Category (4): Q + Q1*

6. Q = Cc! Q1* = (t[100],t[001],t[1
2

1
20]){1,c,1*,c*}

Category (5): Q + Q10 + Q1* + Q10*
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7. Q = Cc! Q10001* = (t[100],t[001],t[1
2

1
20]){1,c,10,c0,1*,c*,10*,c0*}

Category (6): H + (Q � H)10 + H1* + (Q � H)10*

8. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q(H)1* =

(t[100],t[001],t[1
2

1
20]){1,c0,1*,c0*}

9. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q(H)1* =

(t[100],t[001],t[1
2

1
20]
0){1,c,1*,c*}

10. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H)1* =

(t[100],t[001],t[1
2

1
20]
0){1,c0,1*,c0*}
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Category (7): H + (Q � H)1*

11. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q{H} =

(t[100],t[001],t[1
2

1
20]){1,c*}

12. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q{H} =

(t[100],t[001],t[1
2

1
20]*){1,c}

13. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q{H} =

(t[100],t[001],t[1
2

1
20]*){1,c*}

Category (8): Q + Q10*

14. Q = Cc! Q1000* = (t[100],t[001],t[1
2

1
20]){1,c,10*,c0*}

Category (9): H + (Q � H)1* + H10 + (Q � H)10*

15. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q{H}1000 =

(t[100],t[001],t[1
2

1
20]){1,c*,10,c0*}

16. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q{H}1000 =

(t[100],t[001],t[1
2

1
20]*){1,c,10,c0}

17. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q{H}1000 =

(t[100],t[001],t[1
2

1
20]*){1,c*,10,c0*}

Category (10): H + (Q � H)10 + H10* + (Q � H)1*

18. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q(H)1000* =

(t[100],t[001],t[1
2

1
20]){1,c0,10*,c*}

19. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q(H)1000* =

(t[100],t[001],t[1
2

1
20]
0){1,c,10*,c0*}

20. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H)1000* =

(t[100],t[001],t[1
2

1
20]
0){1,c0,10*,c*}

Category (11): H + (Q � H)10*

21. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1} ! Q(H){H} =

(t[100],t[001],t[1
2

1
20]){1,c0*}

22. Q = Cc, H = (t[100],t[010],t[001]){1,c} ! Q(H){H} =

(t[100],t[001],t[1
2

1
20]
0*){1,c}

23. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H){H} =

(t[100],t[001],t[1
2

1
20]
0*){1,c0*}

Category (12): H \ K + (H � K)1* + (K � H)10 + (Q �

(H + K))10*

24. Q = Cc, H = (t[100],t[010],t[001]){1,c}, K =

(t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H){K} =

(t[100],t[001],t[1
2

1
20]
0*){1,c*}

25. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1}, K =

(t[100],t[010],t[001]){1,t[1
2

1
20]�c} ! Q(H){K} =

(t[100],t[001],t[1
2

1
20]*){1,c0*}

26. Q = Cc, H = (t[100],t[001],t[1
2

1
20]){1}, K = (t[100],t[010],t[001]){1,c}

! Q(H){K} = (t[100],t[001],t[1
2

1
20]*){1,c0}

27. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c}, K =

(t[100],t[010],t[001]){1,c}! Q(H){K} = (t[100],t[001],t[1
2

1
20]
0*){1,c0}

28. Q = Cc, H = (t[100],t[010],t[001]){1,t[1
2

1
20]�c}, K =

(t[100],t[001],t[1
2

1
20]){1}! Q(H){K} = (t[100],t[001],t[1

2
1
20]
0){1,c0*}

29. Q = Cc, H = (t[100],t[010],t[001]){1,c}, K = (t[100],t[001],t[1
2

1
20]){1}

! Q(H){K} = (t[100],t[001],t[1
2

1
20]
0){1,c*}.

Note that although 29 double antisymmetry space groups

are generated from using Cc as a colorblind parent group, they

are not all of unique types. This is because there exist proper

affine transformations which map some of these into each

other. We show this by applying the results of x5.3.

To do this, we need to know the transformation

matrices mapping the standard representative groups to the

actual subgroups, and the proper affine normalizer groups of

Cc and its index-2 subgroups. For Cc’s three index-2

subgroups:

(t[100],t[001],t[1
2

1
20]){1} is type P1 and can be mapped from the

standard P1 by

1=2 1=2 0 0

�1=2 1=2 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA:

(t[100],t[010],t[001]){1,c} is type Pc and can be mapped from the

standard Pc by

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA:

(t[100],t[010],t[001]){1,t[1
2

1
20]�c} is type Pc and can be mapped from

the standard Pc by

1 0 �1 0

0 1 0 1=4

0 0 1 0

0 0 0 1

0
BB@

1
CCA:

The proper affine normalizers of Cc are

NA þðCcÞ ¼

2n1 þ 1 0 2n2 þ p r

0 �1 0 ð2n3 þ pÞ=4

2n4 0 2n5 þ 1 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:
2 A

þ : r; t 2 R ^ ni 2 Z ^ ðp ¼ 0 _ p ¼ 1Þ

)
:

The proper affine normalizers of the standard representative

groups of the two types of subgroups (P1 and Pc) are:

P1 normalizers NþA ðP1Þ ¼

n11 n12 n13 r

n21 n22 n23 s

n31 n32 n33 t

0 0 0 1

0
BB@

1
CCA 2 A

þ : r; s; t 2 R ^ nij 2 Z

8>><
>>:

9>>=
>>;;

Pc normalizers NA þðPcÞ ¼

2n6 þ 1 0 2n7 r

0 �1 0 n8=2

n9 0 2n10 þ 1 t

0 0 0 1

0
BB@

1
CCA 2 A

þ : r; t 2 R ^ ni 2 Z

8>><
>>:

9>>=
>>;:

Having collected all this information, we can now evaluate

the proper affine equivalence of the 29 double antisymmetry

groups generated from Q = Cc.

We know that groups from different categories can never be

equivalent; therefore categories (1), (2), (4), (5) and (8) must

contain only one type as only one group has been generated.

For category (3), we have three generated groups. Thus

there are three pairs for which we can test for equivalence,

3 � 4, 3 � 5 and 4 � 5. For group 3, H is P1 type whereas for 4
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and 5 H is Pc type. Therefore, 3 � 4 and 3 � 5 are false. For

4 � 5, we can evaluate:

Q H2ð Þ � Q H1ð Þ 	 NA þ Qð Þ \ TH2
NA þ H0ð ÞT

�1
H1
6¼ ;: ð8Þ

In this case,

TH2
NA þ H0ð ÞT

�1
H1
¼

1 0 �1 0

0 1 0 1
4

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

2n6 þ 1 0 2n7 r

0 �1 0 n8=2

n9 0 2n10 þ 1 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA
�1

2 A
þ : r; t 2 R ^ ni 2 Z

9>>>>=
>>>>;

and

NA þ Qð Þ ¼

2n1 þ 1 0 2n2 þ p r

0 �1 0 2n3 þ pð Þ=4

2n4 0 2n5 þ 1 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

2 A
þ : r; t 2 R ^ ni 2 Z ^ ðp ¼ 0 _ p ¼ 1Þ

)
:

From substituting these in and simplifying, we can show that

4 � 5 is logically equivalent to the existence of a solution with

a positive determinant to the following:

2n1 þ 1 0 2n2 þ p r

0 �1 0 ð2n3 þ pÞ=4

2n4 0 2n5 þ 1 t

0 0 0 1

0
BBB@

1
CCCA ¼

2n6 þ 1� n9 0 �1� 2n10 þ 2n7 r� t

0 �1 0 ð2n8 þ 1Þ=4

n9 0 2n10 þ 1 t

0 0 0 1

0
BBB@

1
CCCA: ð9Þ

There are clearly many solutions, e.g. one solution is where n2

= �1, ni 6¼2 = r = t = 0 and p = 1. Thus, 4 and 5 are equivalent

and therefore for category (3) there are only two types of

groups where Q = Cc. It is trivial to extend these results to

show that categories (6), (7), (9), (10) and (11) similarly have

two types.

For category (12), we have six generated groups. Thus there

are 15 pairs for which we can test for equivalence. Only three

of the 15 have the same H and K types (26 � 25, 24 � 27 and

28 � 29) and therefore only these need to be evaluated using

Q H1ð Þ K1

� �
� Q H2ð Þ K2

� �
	 NA þ Qð Þ \ TH2

NA þ H0ð ÞT
�1
H1

\ TK2
NA þ K0ð ÞT

�1
K1
6¼ ;: ð10Þ

For 26 � 25,

TH2
NA þðH0ÞT

�1
H1
¼

1 0 �1 0

0 1 0 1
4

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

2n6 þ 1 0 2n7 r

0 �1 0 n8=2

n9 0 2n10 þ 1 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA
�1

2 A
þ : r; t 2 R ^ ni 2 Z

9>>>>=
>>>>;
;

TK2
NA þ K0ð ÞT

�1
K1
¼

1
2

1
2 0 0

� 1
2

1
2 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

n11 n12 n13 r

n21 n22 n23 s

n31 n32 n33 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

�

1
2

1
2 0 0

� 1
2

1
2 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA
�1

2 A
þ : r; s; t 2 R ^ nij 2 Z

9>>>>=
>>>>;

and

NA þðQÞ ¼

2n1 þ 1 0 2n2 þ p r

0 �1 0 ð2n3 þ pÞ=4

2n4 0 2n5 þ 1 t

0 0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

2 A
þ : r; t 2 R ^ ni 2 Z ^ ðp ¼ 0 _ p ¼ 1Þ

)
:

From substituting these in and simplifying, we can show that

26 � 25 is logically equivalent to the existence of a solution

with a positive determinant to the following:

2n1 þ 1 0 2n2 þ p r

0 �1 0 ð2n3 þ pÞ=4

2n4 0 2n5 þ 1 t

0 0 0 1

0
BBB@

1
CCCA ¼

2n6 þ 1� n9 0 �1� 2n10 þ 2n7 r� t

0 �1 0 ð2n8 þ 1Þ=4

n9 0 2n10 þ 1 t

0 0 0 1

0
BBB@

1
CCCA ¼

n11 � n31 n12 � n32 n13 � n33 r� t

n21 n22 n23 sþ 1=4

n31 n32 n33 t

0 0 0 1

0
BBB@

1
CCCA: ð11Þ

There are clearly many solutions, e.g. one solution is where n2

=�1, ni 6¼2 = r = t = s = 0, p = 1, ni=j = 1 and ni 6¼j = 0. Thus 25 and

26 are equivalent. Since 24, 27, 28 and 29 can be related to 25

and 26 by automorphisms of 10001*, 26 � 25 implies 24 � 27 and

28 � 29. Therefore there are only three types of category (12)
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groups and a total of 20 double antisymmetry space-group

types for Q = Cc.

APPENDIX C
Equivalence classes, proper affine classes (types),
Mackay groups and color-permuting classes

An equivalence relation can be used to partition a set of groups

into equivalence classes. For example, an equivalence relation

can be applied to partition the set of crystallographic space

groups (which is uncountably infinite) into a finite number of

classes. The proper affine equivalence relation is used to

classify space groups into 230 proper affine classes or ‘types’.

The proper affine equivalence relation can be defined as: two

groups, G1 and G2, are equivalent if and only if G1 can be

bijectively mapped to G2 by a proper affine transformation, a.

G2 � G1 	 9a 2 A
þ : G2 ¼ aG1a�1

� �
: ð12Þ

If it is known that G1 and G2 have the same colorblind parent

group Q, then, instead of using the entire proper affine group

A
þ, it is sufficient to use the proper affine normalizer group of

Q, denoted NA þðQÞ (see footnote 2).

The proper affine equivalence relation does not allow for

any permutations of anti-identities. Other works give another

set of equivalence classes of antisymmetry groups called

Mackay groups (Jablan, 1993a, 2002; Radovic & Jablan, 2005).

The equivalence relation of Mackay groups allows some color

permutations in addition to proper affine transformation. For

double antisymmetry, the Mackay equivalence relation allows

for 10 and 1* to be permuted, i.e. all the primed operations

become starred and vice versa:

The Mackay equivalence relation does not allow for 10* to be

permuted (Radovic & Jablan, 2005). Note that Radovic &

Jablan do give the Mackay equivalence relation as permuting

‘anti-identities’ but 10* is not considered an anti-identity in

their work (it is simply the product of 10 and 1*). They also

conclude that Mackay groups are the minimal representation

of ‘Zamorzaev groups’. This seems potentially inconsistent

with the aforementioned restriction on color permutation. If

we instead allow for all possible color permutations that

preserve the group structure of 10001*, i.e. the automorphisms of

10001*, then we can clearly further reduce the representation

beyond that of the Mackay groups, contrary to what has been

claimed. This is demonstrated by Zamorzaev & Palistrant’s

listing of double antisymmetry space-group-generating sets. In

their listing, they gave only those sets which were unique up to

the automorphisms of 10001* (Zamorzaev & Palistrant, 1980).

Such a listing only needs to contain 1846 Q(H){K} generating

sets, far fewer than the 5005 Mackay equivalence classes of

Q(H){K} groups.

If all possible color permutations that preserve the group

structure of 10001*, i.e. the automorphisms of 10001*, are allowed,

then the equivalence relation can be expressed as

G2 � G1 	 9a 2 A
þ
^ 9p 2 Aut 101
ð Þ : G2 ¼ apðG1Þa

�1
� �

:

ð14Þ

This proper affine color equivalence relation results in 1846

classes for category (12) Q(H){K} groups. The equivalence

classes of this kind of relation are similar to what Koptsik &

Shubnikov (1974) refer to as ‘Belov groups’.

Generalized to an arbitrary coloring scheme, P, the color

equivalence relation, can be defined as

G2 � G1 	 9a 2 A
þ
^ 9p 2 Aut Pð Þ : G2 ¼ apðG1Þa

�1
� �

:

ð15Þ

The advantage of using the color equivalence relation to

reduce the number of equivalence classes becomes greater as

the number of colors (the order of P) increases. For example,

for non-trivial double antisymmetry space groups (where

P ffi Z2
2 and thus Pj j ¼ 4), there are 9507 proper affine

equivalence classes [equation (12)], 5005 Mackay equivalence

classes [equation (13)] and 1846 color equivalence classes

[equation (14)]. Whereas for non-trivial sextuple anti-

symmetry space groups (where P ffi Z2
6 and thus Pj j ¼ 64),

there are 419 973 120 proper affine equivalence classes,

598 752 Mackay equivalence classes and just one color

equivalence class. Although the number of colors only

increased from four to 64 by going from non-trivial double

antisymmetry space groups to non-trivial sextuple anti-

symmetry space groups, the number of proper affine classes

[equation (12)] increased from 9507 to 419 973 120 whereas

the number of color equivalence classes [equation (15)]

actually decreased from 1846 to one.

Although these color-permuting equivalence relations

reduce the number of equivalence classes significantly, they

are not suitable when the differences between the colors are

important. With time-reversal as 10 and rotation-reversal as 1*,

the differences are clearly very important. However, there

may be applications where the color equivalence relation is

suitable, for example, in making patterns for aesthetic

purposes.
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Shubnikov, A. V. (1951). Symmetry and Antisymmetry of Finite
Figures. Moscow: Academy of Sciences. [English translation in
Color Symmetry (1964), edited by W. T. Holser. New York:
Macmillan.]

Zamorzaev, A. M. (1976). The Theory of Simple and Multiple
Antisymmetry. Kishinev: Shtiintsa.

Zamorzaev, A. M. (1988). Comput. Math. Appl. 16, 555–562.
Zamorzaev, A. M., Galyarski, E. I. & Palistrant, A. F. (1978). Color

Symmetry, its Generalizations and Applications. Kishinev:
Shtiintsa.

Zamorzaev, A. M. & Palistrant, A. F. (1980). Z. Kristallogr. 151, 231–
248.

Zamorzaev, A. M. & Sokolov, E. I. (1957a). Kristallografiya, 2, 9–14.
Zamorzaev, A. M. & Sokolov, E. I. (1957b). Sov. Phys. Crystallogr. 2,

5–9.

research papers

38 Brian K. VanLeeuwen et al. � Double antisymmetry Acta Cryst. (2014). A70, 24–38

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB105
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB105
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB117
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB129
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5029&bbid=BB129

